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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university’s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to 

the topic of study and to kindle the learner’s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every 

possibility for some omission or inadequacy in few areas or topics, 

which would definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK2 INTEGRAL EQUATION 

AND INTEGRAL TRANSFORM 
 

Integral transform, mathematical operator that produces a 

new function f(y) by integrating the product of an existing function F(x) 

and a so-called kernel function K(x, y) between suitable limits. The 

process, which is called transformation, is symbolized by the 

equation f(y) = ∫K(x, y)F(x)dx. Several transforms are commonly named 

for the mathematicians who introduced them: in the Laplace transform, 

the kernel is e
−
xy and the limits of integration are zero and plus infinity; 

in the Fourier transform, the kernel is (2π)
−1/2

e
−
ixy and the limits are 

minus and plus infinity.  

 

Integral transforms are valuable for the simplification that they bring 

about, most often in dealing with differential equations subject to 

particular boundary conditions. Proper choice of the class of 

transformation usually makes it possible to convert not only 

the derivatives in an intractable differential equation but also the 

boundary values into terms of an algebraic equation that can be easily 

solved. The solution obtained is, of course, the transform of the solution 

of the original differential equation, and it is necessary to invert this 

transform to complete the operation. For the common transformations,  
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UNIT-8: HILBERT SPACE AND 

SYMMETRIC KERNELS 
 

STRUCTURE 

8.0 Objectives 

8.1 Introduction 

8.2 Symmetric Kernels 

8.3 Complex Hilbert Space 

8.3.1 An Orthonormal System of Functions 

8.3.2 Riesz-Fischer Theorem 

8.4 Hilbert-Schmidt Theorem 

8.5 Let us sum up 

8.6 Keywords 

8.7 Questions for Review 

8.8 Suggested Reading and References 

8.9 Answers to Check your Progress 

8.0 OBJECTIVES 
 

Understand the concept of Symmetric Kernels 

Comprehend the Complex Hilbert Space 

Enumerate Hilbert-Schmidt Theorem 

8.1 INTRODUCTION 
 

In mathematical analysis, the Hilbert–Schmidt theorem, also known as 

the eigenfunction expansion theorem, is a fundamental result 

concerning compact, self-adjoint operators on Hilbert spaces. In the 
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theory of partial differential equations, it is very useful in 

solving elliptic boundary value problems. 

 

8.2 SYMMETRIC KERNELS 
 

Symmetric Kernels: A kernel K(s, t) is symmetric (or complex 

symmetric or Hermitian) if  

   K(s, t) = K*(t, s)     (8.1)  

where the asterisk denotes the complex conjugate. If the kernel is real, 

then its symmetry is defined by the identity to the equality  

    K(s, t)  =  K (t, s)    (8.2)  

An integral equation with a symmetric kernel is called a symmetric 

equation. We have seen in the previous chapters that the integral 

equations with symmetric kernels are of are of frequent occurrence in the 

formulation of physically motivated problems.  

We claim that if a kernel is symmetric, then all its iterated kernels are 

also symmetric. Indeed 

 

Again, if Kn (s, t) is symmetric, then the recursion relation gives  

 

 

(8.3) 

 

 

 

The proof of our claim follows by induction. Note that the trace K(s, s) 

of a Symmetric kernel is always real because K(s, s) = K*(s, s). 

Similarly, the traces of all iterates are also real. 

8.3 COMPLEX HILBERT SPACE 
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We present review of some important properties of the complex Hilbert 

space ℒ2 (a, b) which is needed in the sequel. The same discussion will 

remain applicable to real space as a particular case. A linear space of 

infinite dimension with inner product (or scalar product) (x, y) which is a 

complex number is called a complex Hilbert space if it satisfies the 

following three axioms 

 

(a) the definiteness axiom (x, x) > 0 for x ≠ 0 

(b) the linearity axiom (αx1+βx2, y) = α(x1, y) + β (x2, y) where α and β 

are arbitrary complex numbers  

(c) the axiom of (Hermitian) symmetry (y, x) = (x, y*) 

(d) Let H be the set of complex-valued functions ϕ(t) defined in the 

interval (a, b)such that  

 

 

Furthermore, let us define the inner product by 

 

 

 

Then, H is a complex Hilbert space and is denoted as ℒ2(a, b) or ℒ2. The 

norm ‖ϕ‖ as defined by  

 

 

is called the norm that generates the natural metric 

 

A metric Space is called complete if every Cauchy sequence of functions 

in this space is a convergent sequence. A Hilbert space is an inner 

product linear space that is complete in its natural metric. The Schwarz 

and Minkowskii’s inequalities as given by 
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The Schwarz and Minkowskii’s inequalities as given by  

 

Incidentally, by a square-integrable function g(t), we mean that  

 

 

 

 

A square-integrable function , f(x)is called an ℒ2-function.  

 

Another concept that is fundamental in the theory of Hilbert spaces is the 

concept of completeness. A metric space is called complete if every 

Cauchy sequence of functions in this space is a convergent sequence. If a 

metric space is not complete, then there is a simple way to add elements 

to this space to make it complete. A Hilbert space is an inner-product 

linear space that is complete in its natural metric. The completeness of ℒ2 

spaces plays an important role in the theory of linear operators such as 

the Fredholm operator K, 

 

The operator adjoint to is 

 

The operators (8.10) and (8.11) are connected by the interesting 

relationship 
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which proved as follows 

 

  

 

 

 

 

 

 

 

 

 

 

 

For a symmetric kernel, this result becomes 

 

 

that is, a symmetric operator is self-adjoint. Note that permutation of 

factors in a scalar product is equivalent to taking the complex conjugate; 

that is, (ϕ, Kϕ) = (Kϕ, ϕ)*. Combining this with Equation (8.13), we find 

that, for a symmetric kernel, the inner product (Kϕ, ϕ) is always real; the 

converse is also true. 

 

8.3.1 An Orthonormal System of Functions  

Systems of orthogonal functions play an important role in the theory of 

integral equation and their applications. A finite or an infinite set {ϕk} is 

said to be an orthogonal set if 

 

 

 

 

If none of the elements of this set is a zero vector, then it is said to be a 

proper orthogonal set. The set {ϕi(x)}is orthonormal if 
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Any function ϕ(x) for which ‖ϕ‖ = 1 are said to be normalized. 

Given a finite or an infinite (denumerable) independent set of functions 

{ψ1,ψ2,…,ψk,..} we can construct an orthonormal set {ϕ1,ϕ2,…,ϕk,..} by 

the well· known Gram-Schmidt procedure as follows. 

 

Let    
  

      
 

 

To obtain ϕ2, we define 

 

 

The function ω2 is orthogonal to ϕ1. Hence ϕ2 can be constructed by 

setting     
  

      
. Proceeding in this manner, we obtain 

 

We have, thereby, obtained an equally numerous set of orthonormal 

functions. Again, if we are given a set of orthogonal functions, we can 

convert it into an orthonormal set simply by dividing each function by its 

norm. Starting from an arbitrary orthonormal system, it is possible to 

construct the theory of Fourier series. Suppose we want to find the best 

approximation of an arbitrary function ψ(x) in terms of a linear 

combination of an orthonormal set {ϕ1,ϕ2,…,ϕn}. By the best 

approximation, we mean that we choose the coefficients α1,α2,…,αn  such 

as to minimize 

 

 

 

or, what is equivalent, to minimize 
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Now, for any α1,α2,…, α n we have 

 

It is obvious that the minimum is achieved by choosing αi = (ψ, ϕi) = αi 

(say) The numbers ai are called the Fourier coefficients of the function ψ 

(s) relative to the orthonormal system {ϕi}. In that case, the relation 

(8.14) reduces to 

 

 

Since the quantity on the L.H.S. of (8.15), we obtain  

 

 

 

which, for the infinite set { ϕi } leads to the Bessel inequality 

 

 

 

 

Assuming that we are given an infinite orthonormal system  { ϕi (s)} in 

ℒ, and a sequence of constants {αi}; then the, convergence of the series 

∑    
   

    is clearly a necessary condition for the existence of ℒ2-

function ,f(s) whose Fourier coefficients with respect to the system ϕi are 

αi . It so happens that this condition is also sufficient and the result is 

embodied in the Riesz-Fischer theorem, which we state as follows 

without proof. 
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8.3.2 Riesz-Fischer Theorem 

If { ϕi (s)} is a given orthonormal system of functions in ℒ2 and { αi }is a 

given sequence of complex numbers such that the series  ∑    
   

    

converges, then there exists a unique function ,f(s) for which αi  are the 

Fourier coefficients with respect to the orthonormal system { ϕi }and to 

which the Fourier series converges in the mean, that is 

 

 

 

 

 

If an orthonormal system of functions 3 can be found in ℒ-space such 

that every other element of this space can be represented linearly in terms 

of this system, then it is called an orthonormal basis. The concepts of an 

orthonormal basis and a complete system of orthonormal functions are 

equivalent. Indeed, if any of the following criteria are met, the 

orthonormal set {ϕ1,ϕ2,…,ϕn} is complete. 

a) For every function ψ in ℒ2, 

 

 

 

 

 

b) For every function in ℒ2, 

 

 

 

 

 

This is called Parseval’s identity. 

 

 c) The only function ψ in ℒ2 for which all the Fourier coefficients vanish 

is the trivial function (zero function). 
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 d) There exists no function ψ in ℒ2 such that {ψ, ϕ1,…ϕk, …} is an 

orthonormal set.  

The equivalence of these different criteria can be easily proved. One 

frequently encounters Fourier series of somewhat more general character. 

Let r(t) be a continuous, real, and non-negative function in the interval 

(a, b). We say that the set functions {ϕi} is orthonormal with weight r(t)  

if 

 

The Fourier expansions in terms of such functions are treated by 

introducing a new inner product with the corresponding norm 

 

 

 

 

The space of functions for which ‖ϕ‖r  < ∞ is a Hilbert space and all the 

preceding results hold. Some examples of the complete orthogonal and 

orthonormal systems are listed in the following. 

 

a) The system  

 

 

 

is orthonormal, where k is any integer −∞ < k < ∞. 

 

b) The Legendre polynomials 
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Are orthogonal in the interval (−1,1). Indeed, 

 

c) Let α k, n, denote the positive zeros of the Bessel function Jn(s), k = 

1,2, ⋯ , n > −1. The system of functions Jn(α k n s) is orthogonal with 

weight r(s) = s in the interval (0,1): 

 

Check your Progress-1 

1. Define Orthogonal set 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

2. State the criteria for orthonormal set to be complete 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

8.4 HILBERT-SCHMIDT THEOREM 
 

The pivotal result in the theory of symmetric integral equations is 

embodied in the following theorem 
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Hilbert-Schmidt Theorem: If f(s) can be written in the form 

 

 

where K(s, t) is a symmetric ℒ2-kernel and ℎ(t) is an ℒ-function, then f(s)  

can be expanded in an absolutely and uniformly convergent Fourier 

series with respect to the orthonormal system of eigenfunctions of the 

kernel K .The Fourier coefficients of the function ,f(s) are related to the 

Fourier coefficients ℎn of the function ℎ(s) by the relations where λn  are 

the eigenvalues of the kernel . 

 

Proof. The Fourier coefficients of the function ,f(s) with respect to the 

orthonormal system {ϕn(s)} 

 

where we have used the self-adjoint property of the operator as well as 

the relation λnKϕn= ϕn . Thus, the Fourier series for f(s) is 

 

 

 

The remainder term for this series can be estimated as follows : 

 

We find that the above series is bounded. Also, because ℎ(s) is a ℒ2-

function, the series ∑   
  

    s convergent and the partial sum ∑   
    

     . 

can be made arbitrarily small. Therefore, the series (8.27) converges 
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absolutely and uniformly. It remains to be shown that the series (8.27) 

converges to f(s) in the mean. To this end, let us denote its partial sum as 

 

and estimate the value of ‖f(s) − ψ(s)‖. Now, 

where Kn+1 is the truncated kernel as defined in the previous section. 

From (8.30), we obtain 

 

 

where we have used the self-adjointness of the kernel K
n+1 

and also the 

relation K
n+1 

=    
   . We find that the least eigenvalue of the kernel 

  
    is equal to     

 .  

 

 

 

 

where we have omitted the modulus sign from the scalar product (h, 

  
     ), as it is a positive quantity. Combining (8.31) and (8.32), we 

have 

 

 

Since λn+1 → , we find that ‖f(s) − ψn(s)‖ → 0 as n →  . 
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Finally, we use the relation 

Where is the limit of the series with partial sum , to prove that , f  = ψ  . 

The first term on the right side of (8.33) tends to zero, as proved above. 

To prove that the second term also tends to zero, we observe that, since 

the series (8.27) converges uniformly, we have, for an arbitrarily small 

and positive ϵ, 

 

 

 

When L is sufficiently large. Hence, and the result follows. 

 

 

 

Remark. It is to be noted that we assumed neither the convergence of the 

Fourier series ℎ(s) nor the completeness of the orthonormal system. We 

have merely used the fact that h is an ℒ2-function. An immediate 

consequence of the Hilbert-Schmidt theorem is the bilinear form. Indeed, 

by definition, 

 

which is of the form (8.25) with h(s) = Km – 1 (s, t) ; t fixed. The Fourier 

coefficient ak(t) of Km (s, t) with respect to the system of eigen functions 

{ϕk(s)} of K (s, t) is 

 

 

 

It follows from the above theorem that all the iterated kernels  

Km (s, t), m ≥ 2, of a symmetric ℒ-kernel can be represented by the 

absolutely and uniformly convergent series 
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By setting s = t in (8.35) and integrating from a to b, we obtain 

 

 

where Am is the trace of the iterated kernel Km. Next, we apply the 

Riesz-Fischer theorem and find from (8.37) with m = 2 that the series 

 

 

 

 

 

converges in the mean to a symmetric ℒ2-kernel K(s, t) which, 

considered as a Fredholm kernel, has precisely the sequence of numbers  

{λk} as eigen values. 

Check your Progress-2 

3. State Hilbert-Schmidt Theorem 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

8.5 LET US SUM UP 
 

We have discussed about symmetric kernel and  then all its iterated 

kernels are also symmetric. We discussed about Hilbert and Metric 

space. Systems of orthogonal functions play an important role in the 

theory of integral equation and their applications. We discussed about 

Riesz-Fischer Theorem & Hilbert-Schmidt Theorem 

 

8.6 KEYWORDS 
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Self- Adjoint: In functional analysis, a linear operator A on a Hilbert 

space is called self-adjoint if it is equal to its own adjoint A∗ and that 

the domain of A is the same as that of A∗ 

 

Partial Sum - A Partial Sum is the sum of part of the sequence 

 

Scalar Product: a scalar function of two vectors, equal to the product of 

their magnitudes and the cosine of the angle between them 

 

8.7 QUESTIONS FOR REVIEW 
 

1. Using Hilbert-Schmidt theorem, solve the following symmetric 

integral equations 

 

 

2. Prove Hilbert-Schmidt theorem 

8.8 SUGGESTED READINGS AND 

REFERENCES 
 

1. M. Gelfand and S. V. Fomin. Calculus of Variations, Prentice Hall. 

2. Linear Integral Equation: W.V. Lovitt (Dover). 

3. Integral Equations, Porter and  Stirling, Cambridge. 

4. The Use of Integral Transform, I.n. Sneddon, Tata-McGrawHill, 

1974 

5. R. Churchil& J. Brown  Fourier Series and Boundary Value 

Problems, McGraw-Hill, 1978 

6. D. Powers, Boundary Value Problems Academic Press, 1979. 

8.9ANSWERS TO CHECK YOUR 

PROGRESS 
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1. Provide definition – Refer 8.3.2 

2. Provide 4 criteria – 8.3.2 

3. Provide statement with equation – 8.4 
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UNIT 9: ABEL'S INTEGRAL 

EQUATION 
 

STRUCTURE 

9.0 Objectives 

9.1 Introduction 

9.2 Singular integral equation 

9.3 Abel's Problem 

9.4 The Generalized Abel's Integral Equation 

9.5 Inversion formula for singular integral equation 

9.6 Let us sum up 

9.7 Keywords 

9.8 Questions for Review 

9.9 Suggested Reading and References 

9.10 Answers to Check your Progress 

9.0 OBJECTIVES 
 

Understand the Singular integral equation & its Inversion Formula 

Enumerate Abel's Problem & The Generalized Abel's Integral Equation 

9.1 INTRODUCTION 
 

Niels Henrik Abel devised what is now known as Abel's Integral 

Equation as a tool by which to solve the Tautochrone Problem in 1823. 

Abel in 1823 investigated the motion of a particle that slides down along 

a smooth unknown curve, in a vertical plane, under the influence of the 

gravitational field. The main goal of Abel's problem is to determine the 



Notes 

23 

unknown function g(x) under the integral sign that will define the 

equation of the curve. 

9.2 SINGULAR INTEGRAL EQUATION 
 

An integral equation is called a singular integral equation if one or both 

limits of integration becomes infinite, or if the kernel K(s, t) of the 

equation becomes infinite at one or more points in the interval of 

integration. To be specific, the integral equation of the first kind 

 

 

 

Or the integral equation of second kind 

 

 

is called singular if α (x), or β (x) or both limits of integration are 

infinite. Moreover, the equation (9.1) or (9.2) is also called a singular 

integral equation if the kernel K (s, t) becomes infinite at one or more 

points in the domain of integration. Examples of the first style of singular 

integral equations are given by the following examples 

 

The integral equations (9.4) and (9.5) are Fourier transform and Laplace 

transform of the function u(x) respectively. In fact these two equations 

are Fredholm integral equations of the first kind with kernels given by 
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K(x, w) = e 
–iwx

 and K(x, s) = e 
–sx

. Equations (9.3)-(9.5)can be defined 

also as the improper integrals because of the limits of integration are 

infinite. 

Examples of the second type of singular integral equations are given by 

the following: 

 

where the singular behavior in these examples is attributed to the kernel 

K(x, t) becoming infinite as x → ∞. 

Remark It is important to note that integral equations (9.6) and (9.7) are 

called Abel's problems and generalized Abel's integral equations, 

respectively, after the name of the Norwegian mathematician Niels Abel 

who invented them in 1823 in his research of mathematical physics. 

Singular equations (9.8) are called the weakly-singular second kind 

Volterra type integral equations. 

9.3 ABEL'S PROBLEM 
 

Abel in 1823 investigated the motion of a particle that slides down along 

a smooth unknown curve, in a vertical plane, under the influence of the 

gravitational field. It is assumed that the particle starts from rest at a 

point P, with vertical elevation x, slides along the unknown curve, to the 

lowest point O on the curve where the vertical distance is x = 0 . The 

total time of descent from the highest point to the lowest point on the 

curve is given in advance, and dependent on the elevation x, hence 

expressed by 
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    T = ℎ(x)    (9.9) 

Assuming that the curve between the points P and O has an arc lengths, 

then the velocity at a point Q on the curve, between P and O, is given by 

 

 

Where t is a variable coordinate defines the vertical distance of the point 

Q, and g is a constant defines the acceleration of gravity. Integrating both 

sides of (9.10) gives 

 

 

 

Setting 

ds = g(t)dt    (9.12) 

and using (9.9), we find that the equation of motion of the sliding particle 

is governed by 

 

 

 

We point out that f(x) is a pre-determined function that depends on the 

elevation  and given by 

 

 

where g is the gravitational constant, and ℎ(x) is the time of descent from 

the highest point to the lowest point on the curve. The main goal of 

Abel's problem is to determine the unknown function g(x) under the 

integral sign that will define the equation of the curve. Having 

determined g(x), the equation of the smooth curve, where the particle 
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slides along, can be easily obtained using the calculus formulas related to 

the arc length concepts.  

It is worth mentioning that Abel's integral equation (9.13) is also called 

Volterra integral equation of the first kind. Besides, the kernel K (s, t) in 

(9.13) is given by 

 

 

which shows that the kernel (9.14) is singular in that 

K (s, t)  → ∞ as t → x       (9.15) 

The interesting Abel's problem has been approached by different 

methods. In the following we will employ Laplace transforms only to 

determine a suitable formula to solve Abel's problem (9.13), noting that 

Laplace transforms will not be used in our approach to handle the 

singular equations. Taking Laplace transforms of both sides of (9.13) 

leads to 

 

 

 

 

 

 

 

where Γ is the gamma function. Noting that Γ (1/2) = √  the equation 

(9.16) becomes 

 

 

 

 

which can be rewritten by 

 

 

 



Notes 

27 

Setting 

 

 

 

Into (9.18) yields 

 

 

 

which gives 

 

 

 

upon using the fact 

 

 

Applying L
– 1  to both sides of (9.21) yields the easily calculable formula 

 

 

 

 

that will be used for the determination of the solution. It is clear that 

Leibniz rule is not applicable in (9.23) because the integrand is 

discontinuous at the interval of integration. As indicated earlier, 

determination of g(x) will lead to the determination of the curve where 

the particle slides along this curve.  

It is obvious that Abel's problem given by (9.13) can be solved now by 

using the formula (9.23) where the unknown function g(x) has been 

replaced by the given function f(x). One last remark concerns the use of 

the formula (9.23). The process consists of selecting the proper 

substitution for ( x − t), integrate the resulting definite integral and 

finally differentiate the result of the evaluation.  

The procedure of using the formula (9.23) that determines the solution of 

Abel's problem (9.13) will be illustrated by the following examples. 

 

Example 1.As a first example we consider the following Abel's problem 
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Substituting ,f(s) = s in (9.23) yields 

 

 

 

 

 

 

 

Example 2. Solve the following Abel's problem 

 

 

 

Substituting, f(x) = 
 

 
x in (9.23) gives 

 

 

 

 

Using integration by substitution, where we set y = x − t, we obtain 
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Check your Progress-1 

1. Define Singular integral equation 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Discuss Abel’s Problem 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

9.4 THE GENERALIZED ABEL'S 

INTEGRAL EQUATION 
 

It is important here to note that Abel introduced the more general 

singular integral equation 

 

 

known as the Generalized Abel's integral equation, where the exponent 

of the denominator of the kernel is α, such as 0 < α < 1. It can be easily 

seen that Abel's problem discussed above is a special case of the 

generalized equation where α = 1/2. To determine a practical formula for 

the solution g(x) of (9.30), and hence for the Abel's problem, we simply 

use the Laplace transform in a similar manner to that used above. As 

noted before, the Laplace transform will be used for the derivation of the 

proper formula, but will not be used in handling the equations. Taking 

Laplace transforms to both sides (9.30) yields, 
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Where Γ is the gamma function. The equation (9.31) can be written as 

 

 

Or equivalently 

 

Where 

 

using (9.34) into (9.33) yields upon using the identities 

 

  

 

And 

 

Applying L 
– 1

  to both sides of (9.35) yields the easily computable 

formula for determining the solution. 

 

Recall that, f(x) is differentiable, therefore we can derive a more suitable 

formula that will support our computational of (9.38) by parts where we 

obtain 
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Differentiating both sides of (9.39), noting that Leibniz rule should be 

used in differentiating the integral at the right hand side, yields 

 

 

 

Substituting (9.40) into (9.38) yields the desired formula given by 

 

 

That will be used to determine the solution of the generalized Abel's 

equation and consequently, of the standard Abel's problem as well. This 

will be illustrated by examining the following examples. 

 

Example 1. Solve the following generalized Abel's integral equation 

 

 

Notice that 

 

 

 

Using (9.38) gives  
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Example 2. Solve the following generalized Abel's integral equation 

Notice that  

 

 

 

Using (9.38) gives 

 

 

Example 3. Solve the following generalized Abel's integral equation 

 

 

Notice that  

 

 

 

Using (9.38) gives 
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9.5 INVERSION FORMULA FOR 

SINGULAR INTEGRAL EQUATION 
 

The integral equation (9.30) is a special case of the singular integral 

equation 

 

 

 

 

Where ℎ(t) is a strictly monotonically increasing and differentiable 

function in (a, b) and ℎ'(t) ≠ 0 in this interval. To solve this, we consider 

the integral 

 

 

 

 

And substitute for f(u)from (9.48). This gives 

 

 

 

 

 

which, by change of the order of integration, becomes 

 

 

 

 

The inner integral is easily proved to be equal to the beta function Β(α, 1 

— α). We have thus proved that 

 

 

 

and by differentiating both sides of (9.49), we obtain the solution 
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Similarly, the integral equation  

 

and a < s < b, with ℎ(t) a monotonically increasing function, has the 

solution  

 

 

We close this section with the remark that a Fredholm integral equation 

with a kernel of the type 

 

Where H(s, t) is a bounded function, can be transformed to a kernel 

which is bounded. It is done by the method of iterated kernels. Indeed, it 

can be shown that, if the singular kernel has the form as given by the 

relation (9.53), then there always exists a positive integer p0, dependent 

on α, such that, for p > p0 the iterated kernel Kp(s, t) is bounded. For this 

reason, the kernel (9.53) is called weakly singular. 

 

Note that, for this hypothesis, the condition α < 1 is essential. For the 

important case α = 1, the integral equation differs radically from the 

equations considered in this section. Moreover, we need the notion of 

Cauchy principal value for this case. But, before considering the case α  

= 1, let us give some examples for the case α < 1. 

 

Example 1. Solve the integral equation 
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Comparing this with integral equation (9.48), we see that α = 1/2 

and ℎ(t) = 1 − cos t, a strictly monotonically increasing function in (0,  ). 

Substituting these values for ℎ(u) in (9.50), we have the required solution 

 

Similarly, the integral equation 

 

 

 

has the solution 

 

Example 2. Solve the integral equation 

 

And 

 

Using (9.48) and (9.58), we find that ℎ(t) = t
2
, which is a strictly 

monotonic function. The solution, therefore, follows from (9.50) 
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Similarly, the solution of the integral equation (9.59) is 

 

The results (9.60) and (9.61) remain valid when a tends to 0 and b tends 

to +∞. Hence, the solution of the integral equation 

 

 

 

Similarly, the solution of the integral equation 

 

 

Check your Progress-2 

3. Explain The Generalized Abel's Integral Equation 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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4. State the concept of Inversion formula for singular Integral Equation 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

9.6 LET US SUM UP 
 

The Singular integral equation that has enormous applications in applied 

problems including fluid mechanics, bio-mechanics, and electromagnetic 

theory. 

9.7 KEYWORDS 
 

1. Monotonic function :  is a function which is either entirely 

nonincreasing or nondecreasing 

2. Hypothesis: a supposition or proposed explanation made on the basis 

of limited evidence as a starting point for further investigation. 

3. Notion:  a conception of or belief about something. 

9. 8 QUESTIONS FOR REVIEW 
 

1. Solve the following Abel's problem 

 

 

2. Find an approximate solution to the following Abel's problem 

 

 

In this example ,f(x) = sinh , hence ,f(0) = 0 and ,f'(x) = cosh x. 

3. Solve 
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9.9 SUGGESTED READINGS AND 

REFERENCES 
 

1. M. Gelfand and S. V. Fomin. Calculus of Variations, Prentice Hall. 

2. Linear Integral Equation: W.V. Lovitt (Dover). 

3. Integral Equations, Porter and  Stirling, Cambridge. 

4. The Use of Integral Transform, I.n. Sneddon, Tata-McGrawHill, 

1974 

5. R. Churchil& J. Brown  Fourier Series and Boundary Value 

Problems, McGraw-Hill, 1978 

6. D. Powers, Boundary Value Problems Academic Press, 1979. 

 

9.10 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide definition  – 9.2 

2. Provide explanation – 9.3 

3.Provide explanation – 9.4 

4. Provide explanation – 9.5  
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UNIT 10: VARIATION PRINCIPLE 
 

STRUCTURE 

10.0 Objectives 

10.1 Introduction 

10.2 Singular integral equation 

10.3  The Euler–Lagrange equation 

10.4  Hamilton’s principle of least action 

10.4.1 Minimal surface of revolution. 

10.4.2 The brachistochrone 

10.5 Geodesics on the sphere 

10.6 Isoperimetric Problems 

10.7Let us sum up 

10.8 Keywords 

10.9 Questions for Review 

10.10 Suggested Reading and References 

10.11 Answers to Check your Progress 

10.0 OBJECTIVES 
 

Understand the concept of Singular integral equation 

Comprehend The Euler–Lagrange equation and Hamilton’s principle of 

least action 

Understand the Minimal surface of revolution and The brachistochrone 

Enumerate Geodesics on the sphere  

Understand the Isoperimetric Problems 
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10.1 INTRODUCTION 
 

The calculus of variations gives us precise analytical techniques to 

answer questions of the following type.  

- Find the shortest path (i.e., geodesic) between two given points on a 

surface. 

- Find the curve between two given points in the plane that yields a 

surface of revolution of minimum area when revolved around a given 

axis. 

-Find the curve along which a bead will slide (under the effect of gravity) 

in the shortest time. 

It also underpins much of modern mathematical physics, via Hamilton’s 

principle of least action. It can be used both to generate interesting 

differential equations. 

10.2 FINDING EXTREMA OF FUNCTIONS 

OF SEVERAL VARIABLES 
 

We start by introducing some notation. Let x ∈ ℝ
n 

be an arbitrary point. 

We shall denote by   
  the space of vectors based at the point x. The 

space   
  is called the tangent space to ℝ

n
 at the point x. Let U ⊂ ℝ

n
 be 

an open subset and let f : U → R be a differentiable function. Recall that 

a point x ∈ U is a critical point of the function f if Df(x) = 0, where Df(x) 

∈ (  
 )

*
 is the derivative matrix of f at x. 

This condition is equivalent to D f(x)ε = 0 for all tangent vectors ε at x; 

that is, for all ε ∈   
   In turn this condition is equivalent to 

 

 

 

 

There are three main ingredients in this equation: the point x ∈ U ⊂ ℝ
n
, a 

function f defined on U and the tangent space   
  at x. We will now 

generalise this to functionals. 
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 10.2.1 A motivating example: geodesics 

As a motivating example, let us consider the problem of finding the 

shortest path between two points in the plane: P and Q say. It is well-

known that the answers is the straight line joining these two points, but 

let us derive this. 

By a path between P and Q we mean a twice continuously differentiable 

curve (a C
2
 curve for short) 

 

 

 

with the condition that x(0) = P and x(1) = Q. The arc length of such a 

path is obtained by integrating the norm of the velocity vector 

 

 

 

 

 

Finding the shortest path between P and Q means minimising the 

arclength over the space of all paths between P and Q. To use equation 

(1) we need to identify its ingredients in the present problem. The role of 

U ⊂ ℝ
n
 is played here by the (infinite-dimensional) space of paths in ℝ

2
 

from P to Q, and the function to be minimised is the arclength S. The 

final ingredient needed in order to mimic (1) is the analogue of the 

tangent space   
  . 

 

These are the vectors based at x, hence they can be understood as 

differences of points y − x for y, x ∈ ℝ
n
. In our case, they are differences 

of C2 curves x(t) and y(t) from P to Q. Let ε(t) = y(t) − x(t) be one such 

difference of curves. Then ε : [0, 1] → ℝ
2
is itself a C2 function with the 

condition that ε(0) = ε(1) = 0 ∈ ℝ
2
. Such a ε is called an (endpoint-fixed) 

variation, hence the name of the theory. 

The condition for a path x being a critical point of the arclength 

functional S is now given by a formula analogous to (1): 
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As we now show, this condition translates into a differential equation for 

the path x. Notice that 

 

 

 

 

 

 

 

 

 

 

 

Evaluating at s = 0, we find 

 

 

 

 

 

 

Integrating by parts and using that ε(0) = ε(1) = 0, we find that 

 

  

 

 

Therefore a path x is a critical point of the arclength functional S if and 

only if 

 

We will prove in the next section that this actually implies that 
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which says that the velocity vector   ̇ has constant direction; i.e., that it is 

a straight line. There is only one straight line joining P and Q and it is 

clear from the geometry that this path actually minimises arclength. 

 

10.2.2 The fundamental lemma of the calculus of 

variations 

In this section we prove an easy result from analysis which was used 

above to go from equation (2) to equation (3). This result is fundamental 

to the calculus of variations. 

 

Theorem 1 (Fundamental Lemma of the Calculus of Variations). Let f : 

[0, 1] → Rn be a continuous function which obeys 

 

 

 

 

for all C
2
 functions h : [0, 1] → ℝ

n
 with h(0) = h(1) = 0. Then f ≡ 0. We 

will prove the case n = 1 and leave the general case as an (easy) exercise. 

 

Proof for n = 1. Let f : [0, 1] → R be a continuous function which obeys 

 

 

 

 

for all C
2
 functions h : [0, 1] → ℝ with h(0) = h(1) = 0. Then we will 

prove that f ≡ 0.Assume for a contradiction that there is a point t0 ∈ [0, 

1] for which f(t0) ≠ 0. We will assume in addition that f(t0) > 0, with a 

similar proof working in the case f(t0) < 0. Because f is continuous, there 

is a neighbourhood U of t0 in which f(t) > c > 0 for all t ∈ U.  

 

We will now construct a C2 function h : [0, 1] → R with the following 

properties: 
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(P1) h(t) = 0 for all t outside the neighbourhood U; and 

(P2) ∫  
 

 
h(t)dt = ∫  

 

 
h(t)dt > 0. 

 

Postponing for a moment the construction of such a function, let us see 

how their existence allows us to prove the Lemma. Let us estimate the 

integral 

 

This violates the hypothesis of the Lemma, hence we deduce that there is 

no point t0 for which f(t0) ≠ 0. 

10.3 THE EULER–LAGRANGE 

EQUATION 
 

Let  P,Q be the space of C
2
 curves x : [0, 1] → ℝ

n
 with x(0) = P and x(1) 

= Q. Let L : R
2n+1 

→ R be a sufficiently differentiable function (typically 

smooth in applications) and let us consider the functional S :  P,Q → ℝ 

defined by 

 

 

 

The function L is called the lagrangian and the functional S is called the 

action. Extremising S will yield a differential equation for x. Recall that a 

path x is a critical point for the action if, for all endpoint-fixed variations 

ε, we have 

 

 

 

Differentiating under the integral sign, we find 
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where we have integrated by parts and used that ε(0) = ε(1) = 0. Using 

the Fundamental Lemma, this is equivalent to 

 

 

 

 

 

for all i = 1, 2, . . . , n. This is the Euler–Lagrange equation. 

As an example, let us reconsider the lagrangian L(x,  ̇, t  ) = || ̇||Then 

 

 

 

 

 

and the Euler–Lagrange equation simply says that    is 

constant, as we saw above. 

Check your Progress-1 

1. State and Prove (Fundamental Lemma of the Calculus of Variations). 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Explain The Euler–Lagrange equation 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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10.4 HAMILTON’S PRINCIPLE OF LEAST 

ACTION 
 

 

Consider a particle of mass m moving in R3 under the influence of a 

potential V :  3
 → ℝ. 

Let x : ℝ →  3
 denote the trajectory of this particle. Define the kinetic 

energy of the trajectory to be the function T :  3
 → ℝ defined by 

 

 

 

We define the lagrangian to be the difference between the kinetic and 

potential energies 

 

 

 

The action of the trajectory from time t0 to time t1 is the integral 

 

 

 

 

Hamilton’s Principle of Least Action says that particles follow 

trajectories which minimize the action. Such trajectories are therefore 

called physical trajectories. 

 

For the above Lagrangian, we have 

 

 

 

and the Euler–Lagrange equation is nothing but Newton’s second law: 

 

 

 

where we recognise the right-hand side of this equation as the force due 

to the potential V .More generally, for any lagrangian (not necessarily of 
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the form T −V ) one calls the quantity∂L/∂ ̇i
 the force, the quantity 

∂L/∂ ̇i
 the momentum, and the quantity∑   ̇   

   ̇
 
    1 − L the energy. For 

the above Lagrangian L = T − V , the energy is T + V . 

 

10.4.1 Minimal surface of revolution. 

Consider two points in the plane with coordinates (x1, y1) and (x2, y2) 

with x2 > x1. Let f : [x1, x2] → ℝ be a C
2
 function with the property that 

f(x1) = y1 and f(x2) = y2. The graph of this function is a curve from (x1, y1) 

to (x2, y2). Now consider revolving this curve around the x-axis to yield a 

surface of revolution. The surface area of the resulting surface of 

revolution is given by the following integral 

 

 

 

where f '(x) is the derivative of f(x) with respect to x. 

 

10.4.2 The brachistochrone. Consider a bead of mass m which can slide 

down a wire frame under the influence of gravity but without any 

friction. Suppose that the bead is dropped from rest from a height h. Let τ 

denote the time it takes to slide down to the ground. This time will 

depend on the shape of the wire. The shape for which τ is minimal is 

called the brachistochrone (Greek for ―shortest time‖). 

We will assume that the wire has no torsion, so that the motion of the 

bead happens in one plane: the (x, z) plane with z the vertical 

displacement and x the horizontal displacement. We choose our axes in 

such a way that wire touches the ground at the origin of the plane: (0, 0). 

The shape of the wire is given by a function z = z(x), with z(0) = 0 and 

z(h) = l. Let s denote the length along the wire from the origin to the 

point (x, z) on the wire. 

The kinetic energy of the bead at any time t after being dropped is given 

by 
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whereas the potential energy is given by 

 

    V = −mg (h − z) 

Energy is conserved because there is no friction, whence T +V is a 

constant. To compute it, we evaluate it at the moment the bead is 

dropped. Because it is dropped from rest, ds/dt = 0 and hence T = 0. 

Since the bead is dropped from a height h, the potential energy also 

vanishes, and we have that T + V = 0. From this identity we can solve for 

ds/dt: 

 

 

 

 

where we have chosen the negative sign for the square root, because as 

the bead falls, s decreases. Now, the length element along the wire is 

given by 

 

 

 

Let us rewrite equation (6) as 

 

 

 

 

and insert equation (7) in this equation, to obtain 

 

 

 

 

Integrating this expression, we obtain the time τ taken by the bead to fall 

from the point (l, h) to the point (0, 0): 
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This formula defines a functional on functions z : [0, l], x ↦ z(x), with 

z(0) = 0 and z(h) = l, given by 

 

 

 

where we have conveniently reabsorbed the constant √   into the 

functional. 

 

10.5  GEODESICS ON THE SPHERE 
 

 Let P and Q be any two distinct points on the unit sphere S
2
 in ℝ

3
. Let x : 

[0, 1] → S
2
 ⊂ ℝ

3
 be a C

2
 curve from P to Q. In spherical polar 

coordinates, we can write 

 

  x(t) = (cos θ(t) sin ϕ(t), sin θ(t) sin ϕ(t), cos ϕ(t)) . 

 

The arclength is computed by integrating || ̇||. An easy calculation yields 

 

 

 

whence the arclength of the path defines a functional on functions θ and 

ϕ 

 

 

 

The shortest path between P and Q can now be found by extremising the 

above functional. It is however technically easier to parametrise the path 

in terms of the angle ϕ itself, in such a way that the path is given by 

specifying the function ϕ ↦ θ(ϕ). In terms of this function, the arclength 

functional becomes 

 

 

 

where θ' is now the derivative of θ with respect to ϕ. 
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10.6 ISOPERIMETRIC PROBLEMS 
 

The original isoperimetric problem was posed by the ancient Greeks: 

find the closed plane curve of a given length that encloses the largest 

area. They even managed to convince themselves that the intuitive 

answer (the circle) was correct. The reason this problem is called 

isoperimetric is that one is maximising the area inside the curve while 

keeping the perimeter fixed. More generally, an isoperimetric problem is 

one where one is trying to extremise a functional subject to a (functional) 

constraint. In this section we will learn how to deal with such constrained 

extremisation in the context of the variational calculus. Let us start by 

setting up the classical isoperimetric problem in this context. 

 

Let x : [0, 1] → ℝ
2
 be a C

2
 curve which is closed: x(0) = x(1). The area 

enclosed by the curve is given by the following functional 

 

 

 

whereas the perimeter of the curve is given by the following functional: 

 

 

 

The isoperimetric problem is the following: extremise S[x] subject to 

A[x] = l. 

Surely you recognise the finite-dimensional analogue to this problem. 

Let f, g : U ⊂ ℝ
n
 → ℝ be functions of n variables. One can then 

extremise f subject to g = 0. As in SVC, one can use the method of 

Lagrange multipliers. We define a new function F : U ×R → R of n+1 

variables (the new variable, typically denoted λ, is the Lagrange 

multiplier) by F(x, λ) = f(x) − λg(x) and one simply extremises F without 

any constraints. The resulting equations are 
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The method of Lagrange multipliers extends to the calculus of variations. 

Suppose that we want to extremise the action 

 

 

 

 

on functions x : [0, 1] → ℝ
n
, subject to the constraint 

 

 

 

 

NOTE:  

 

Without loss of generality we have taken the constraint to be A[x] = 0 as 

opposed to A[x] = c for some constant c. Clearly if A[x] = c, A0[x] = A[x] 

− c = 0. 

The method of Lagrange multipliers says that we should construct a new 

functional depending in addition on one extra parameter λ (not a 

function, but a constant) 

 

 

 

and extremise   ̅[x, λ] in the space of functions x : [0, 1] → ℝ
n
. Any 

solution of the resulting Euler–Lagrange equation will depend on 2n 

constants of integration and the parameter λ. These are then fixed by the 

2n boundary conditions for x(0) and x(1) and the constraint A[x] = 0. 

The only reason we have 2n constants of integration is because the 

lagrangian is first-order; that is, it depends only on x and  ̇. This means 

that the resulting Euler–Lagrange equation is a second-order ordinary 

differential equation for the n component functions of x and hence there 

are 2n constants of integration: 2 constants per component function. In 

general, if the lagrangian depends on x and its first k derivatives, we will 

have kn constants of integration and an equal number of boundary 

conditions. 

Recall that a function x : [0, 1] → ℝ
n
 is a critical point of the functional 

S[x] if for any variation ε. 
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In the presence of a constraint A[x] = 0, we would have to consider only 

those variations which preserve the constraint; that is, only those ε for 

which A[x +sε] = 0 for all s. This condition is generally too strong and 

there may not be any nontrivial variations satisfying this. Instead we 

introduce a two-parameter family of variations: S[x + sε + rη] and we 

choose the parameters s and r in such a way that A[x + sε + rη] = 0. At a 

fixed function x and for fixed variations εand η, the condition A[x + sε + 

rη] = 0 defines a curve in the (r, s) plane: g(r, s) = 0. Hence, for fixed x, 

ε, η, we want to extremise the function f(r, s) = S[x + sε + rη] subject to 

the condition g(r, s) = 0. 

 

The method of Lagrange multipliers for functions of two variables (here 

s and r) says that we should extremise the function 

 

 

which is nothing but 

 

 

 

This function has a critical point if the following conditions are satisfied: 

 

 

 

 

Check your Progress-2 

3. Discuss Hamilton’s principle of least action 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4. What do you understand by Geodesics on the sphere? 



Notes 

53 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

10.7   LET US SUM UP 
 

Thus far we have considered functionals defined on curves; that is, on 

functions of one variable. The Euler–Lagrange equations obtained in this 

way are always ordinary differential equations. In the same way, one can 

obtain partial differential equations by varying functional of functions of 

several variables. In fact, many of the interesting partial differential 

equations arise in this way. 

10.8 KEYWORDS 
 

1. Extremise Function: In calculus of variations the basic problem is to 

find a function y for which the functional I(y) is maximum or 

minimum. We call such functions as extremizing functions and the 

value of the functional at the extremizing function as extremum 

2. A second order ordinary differential equation is an ordinary 

differential equation in which any derivatives with respect to the 

independent variable have order no greater than 2. 

10.9 QUESTIONS FOR REVIEW 
 

1. Prove that θ so defined is a smooth function. 

 

 

2. Extremising the functional S[θ], prove that the shortest path between 

any two points P and Q on the unit sphere lies on a great circle; that is, 

on the intersection of the sphere with a plane through the centre of the 

sphere 

Where  
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10.10 SUGGESTED READINGS AND 

REFERENCES 
 

1. M. Gelfand and S. V. Fomin. Calculus of Variations, Prentice Hall. 

2. Linear Integral Equation: W.V. Lovitt (Dover). 

3. Integral Equations, Porter and  Stirling, Cambridge. 

4. The Use of Integral Transform, I.n. Sneddon, Tata-McGrawHill, 

1974 

5. R. Churchil& J. Brown  Fourier Series and Boundary Value 

Problems, McGraw-Hill, 1978 

6. D. Powers, Boundary Value Problems Academic Press, 1979. 

 

10.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide statement and proof – 10.2.2 

2. Provide explanation – 10.3 

3. Provide explanation – 10.4  

4. Provide explanation – 10.5  
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UNIT 11: INTEGRAL TRANSFORM 

METHOD I 
 

STRUCTURE 

11.0 Objectives 

11.1 Introduction 

11.2 Integral Transform 

11.3 Laplace Transform 

11.3.1 Some Useful Results about Laplace Transform 

11.4 Convolution Theorem 

11.4.1 Method of Convolution 

11.4.2 Integral equation of convolution type  

11.4.3 Convolution Theorem: 

11.5 Applications to Volterra Integral Equations with Convolution-Type 

Kernels 

11.6 Let us sum up 

11.7 Keywords 

11.8 Questions for Review 

11.9 Suggested Reading and References 

11.10 Answers to Check your Progress 

11.0 OBJECTIVES 

 

Understand the concept of Integral Transform 

Comprehend Laplace Transform 

Enumerate Convolution Theorem 
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Understand the Applications to Volterra Integral Equations with 

Convolution-Type Kernels 

11.1 INTRODUCTION 
 

Integral transforms are used in handling of partial differential equations. 

The choice of a particular transform to be employed for the solution of an 

equation depends on the boundary conditions of the problem and the ease 

with which the inverse transform can be obtained. An integral transform 

when applied to a partial differential equation (PDE), reduces its number 

of independent variable by one. They are generally applied to the 

problems related to the transmission lines, conduction of heat, vibrations 

of a string, transverse oscillations of an elastic beam, free and forced 

oscillations of a membrane, etc. 

11.2 INTEGRAL TRANSFORM 
 

The integral transform of      defined by I[f(x)] is given by f(s) = 

∫             
 

 
 where K (s, x)  is called the kernel of the 

transformation, a known function of s and x. The limits a and b may be 

finite or infinite, and when at least one limit is infinite, this integral 

becomes improper. The function is called the inverse transform of f (s).  

 

Depending upon the type of kernel and the limits, we can obtain various 

types of integral transforms, e.g. Laplace transform, Fourier transform, 

Mellin transform, Hankel transform, Legendre transform, Laguerre 

transform, etc. There are some examples of the kernel as follows: 
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When kernel is sine or cosine or Bessel’s function, the transformation is 

called Fourier sine or Fourier cosine or Hankel transform, respectively. 

The integral transform methods are of great value in the treatment of 

integral equations, especially the singular integral equations. Suppose 

that a relationship of the form 

 

 

 

 

is known to be valid and that this double integral can be evaluated as an 

iterated integral. This means that the solution of the integral equation of 

the first kind, 

 

 

 

 

 

 

 

Conversely, the relation (11.2) can be considered as the solution of the 

integral equation (11.3). It is conventional to refer to one of these 

functions as the transform of the second and to the second as an inverse 

transform of the first. The most celebrated example of the double integral 

(11.1) is the Fourier integral 

 

 

 

 

which results in the reciprocal relations 

 

 

 

and 
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The function f(s) is known as the Fourier transform ) T[g] of g(t) and g(s) 

as the inverse transform T 
– 1

 [f]of f(s), and vice versa. The function f(s) 

exists if g(t) is absolutely integrable, and it is square-integrable if g(t) is 

square-integrable, as can be readily verified using Bessel’s inequality. In 

the sequel, we shall assume that the functions involved in the integral 

equations as well as their transforms satisfy the appropriate regularity 

conditions, so that the required operations are valid. 

 

As a second example, consider the double integral 

 

This leads to the sine transform and its inverse, 

 

 

 

 

 

 

 

 

respectively. For ease of notation, we shall also call the transform of f as 

F and that of g as G, etc., for all the transforms. It will be clear in the 

context as to what transforms we are implying.  

 

11.3 LAPLACE TRANSFORM 
 

Laplace transform is a powerful tool for solving linear differential 

equations. Laplace transform converts a linear differential equation to an 

algebraic problem. This process of changing from operations of calculus 

to algebraic operations on transforms in solving initial value problem is 

known as operational calculus, which is an important area of applied 

mathematics.  
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The advantage of Laplace transforms in solving initial value problems 

lies in the fact that the initial conditions are taken care of at the outset 

and the solution is directly obtained without resorting to finding the 

general solution and then the arbitrary constants. The name is due to the 

French mathematician Pierre Simon de Laplace who used this transform 

while developing the theory of probability.  

 

The Laplace transform L[f ] of a function f(s) is defined as 

 

 

 

And for L[f] = F(p) then f is called an Inverse Laplace Transform of F(p), 

and we write 

 

L
-1

[F]  = f(s)     (11.11)  

L
-1 

is known as the inverse Laplace Transformation operator. 

 

11.3.1 Some Useful Results about Laplace 

Transform 

 

Table of Laplace transform of some elementary functions : 
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1. Linearity property of Laplace transforms. If c1and c2 be constants, 

then  

 

 

 

3. First translation (or shifting) theorem. 

 

 

 

 

4. Unit step function or Heaviside’s unit function. 

 

Definition.It is denoted and defined as 

 

 

 

 

 

 

 

5. Second translation (or shifting) theorem 

 

6. Change of scale property 

 

 

 

 

7. Laplace transform of derivatives: 
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8. Multiplication by positive integral powers of t. 

 

 

 

 

 

9. Division by t. 

 

10. Laplace transform of periodic function. Given that F(t) is a 

periodic function with period a , that is, F(t + na) = F(t), for n = 1, 2, 3, . 

.. Then, we have 

 

 

 

11. Table of inverse Laplace transform of some functions 
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12. Laplace Transform of Integral If f(t) is a piecewise continuous in 

every finite interval 0 ≤ t ≤ a in [0, ∞) and f(t) is of exponential order α > 

0 and if L[f(t)] = F(s), then 

 

 

 

 

Check your Progress-1 

1. What is Integral Transform? 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2.Define Unit step function 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

11.4 CONVOLUTION THEOREM 
 

11.4.1 Method of Convolution  

Let f(t), g(t) be two functions defined for all t ≥ 0. The convolution of f(t) 

and g(t) is defined as the integral 

 

11.4.2 Integral equation of convolution type T 

he integral equation 
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in which the kernel K(t − x) is a function of the difference (t − x) only, is 

known as integral equation of the convolution type. Using the definition 

of convolution, we may re-write it as  

 

 

 

11.4.3 Convolution Theorem: 

 

 

 

 

 

 

 

 

The region of this double integral is bounded by the lines u = 0, u = t, t = 

0, and t = ∞. 

Changing the order of the integration t varies from u to ∞ and u varies 

from 0 to ∞. 

 

 

 

 

Put v = t − u in the inner integral ∴ dv = dt. 

When t = u, v = 0 and when t = ∞, v = ∞ 
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Or equivalently 

 

 

 

Examples 1. Find using convolution theorem 

 

 

 

11.5 APPLICATION TO VOLTERRA 

WITH CONVOLUTION – TYPE KERNELS  
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Consider the Volterra-type integral equation of the first kind, 

 

 

Where k(s − t) depends only on the difference (s − t). Applying the 

Laplace transform to both sides of this equation, we obtain 

 

 

 

 

 

The solution follows by inversion. The present method is also applicable 

to the Volterra integral equation of the second kind with a convolution-

type kernel 

 

 

On applying Laplace transformation to both sides and using the 

convolution formula, we have and inversion yields the solution. 

 

 

 

 

We can also find the resolvent kernel of the integral equation (11.15) by 

integral transform methods. For this purpose, we first show that, if the 

original kernel k(s, t) is a difference kernel, then so is the resolvent 

kernel. Since the resolvent kernel   (s, t) is a sum of the iterated kernels, 

all that we have to prove is that they all depend on the difference (s −t). 

Indeed, 
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where we have set a = x - t. This process can obviously be continued and 

our assertion is proved. Hence, the solution of the integral equation 

(11.15) is 

 

Application of the Laplace transform to both sides of (11.18) gives 

 

From (11.16) and (11.19), we have 

 

By inversion, we recover   (s, t) . 

Example 1. Solve the Abel integral equation 

 

This is a convolution integral and therefore 
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Where K(p) is the Laplace transform of k(s) = s
– α

  

 

 

From (11.24) and (11.25), it follows that 

 

 

 

 

where we have used the relation   (α)   (1 − α) = π csc πα . Now if we 

use the relation (11.14), (11.25) becomes 

 

By virtue of the property 7 of Laplace Transform, we finally have  

Example 2. Solve the integral equation 

 

 

Taking the Laplace transform of both sides, we obtain 
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Where K(p) is the Laplace transform of k(s) = e
s
 

 

The result of combining (11.28), (11.29), (11.30) is 

 

 

Whose inverse is 

 

 

Check your Progress-2 

1. What do you understand by Method of Convolution? 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2.State and prove Convolution Theorem 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

11.6 LET US SUM UP  
 

The advantage of Laplace transforms in solving initial value problems 

lies in the fact that the initial conditions are taken care of at the outset 

and the solution is directly obtained without resorting to finding the 

general solution and then the arbitrary constants. 

 

11.7 KEYWORDS 
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Arbitrary constant. mathematics. : a symbol to which various values 

may be assigned but which remains unaffected by the changes in the 

values of the variables of the equation 

Periodic function: a function returning to the same value at regular 

intervals 

11.8 QUESTIONS FOR REVIEW 
 

1. With the help of the Laplace transform, solve the below equation for a 

general convolution kernel 

 

 

2. Solve the inhomogeneous integral equation 

 

 

 

 

 

3. Find the resolvent of the integral equation 

 

11.9 SUGGESTED READINGS AND 

REFERENCES 
 

1. M. Gelfand and S. V. Fomin. Calculus of Variations, Prentice Hall. 

2. Linear Integral Equation: W.V. Lovitt (Dover). 

3. Integral Equations, Porter and  Stirling, Cambridge. 



Notes 

70 

4. The Use of Integral Transform, I.n. Sneddon, Tata-McGrawHill, 

1974 

5. R. Churchil& J. Brown  Fourier Series and Boundary Value 

Problems, McGraw-Hill, 1978 

6. D. Powers, Boundary Value Problems Academic Press, 1979. 

 

11.10 ANSWERS TO CHECK YOUR 
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4. Provide statement and proof – 11.4.3  
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UNIT 12: INTEGRAL TRANSFORM 

METHOD II 
 

STRUCTURE 

12.0 Objectives 

12.1 Introduction 

12.2 Fourier Transform 

12.2.1 The Fourier Sine Transform: 

12.2.2 The Fourier Cosine Transform: 

 12.2.3 Linearity Property of Fourier Transforms: 

12.2.4 Change of scale property. 

12.2.5 Convolution. 

12.2.6 Convolution property 

12.2.7 Shifting Property 

12.3 Mellin transformation 

12.3.1 Relation to Laplace and Fourier Transformations 

12.3.2 Inversion Formula 

12.3.3Theorem 

12.4 Transformation of Distributions 

12.5 Let us sum up 

12.6 Keywords 

12.7 Questions for Review 

12.8 Suggested Reading and References 

12.9 Answers to Check your Progress 
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12.0 OBJECTIVES 
 

Understand the concept of Fourier Transform and its different properties 

Comprehend Mellin transformation 

 

12.1 INTRODUCTION 
 

The Mellin transform is an integral transform that may be regarded as 

the multiplicative version of the two-sided Laplace transform. This 

integral transform is closely connected to the theory of Dirichlet series, 

and is often used in number theory, mathematical statistics, and the 

theory of asymptotic expansions; it is closely related to the Laplace 

transform and the Fourier transform, and the theory of the gamma 

function and allied special functions. 

 

12.2 FOURIER TRANSFORM 
 

 

Definition: 

Given a function Y(x) defined for all x in the interval −∞ < x < ∞, the 

Fourier transform of Y(x) is a function of a new variable 0 given by 

 

 

The function Y(x) is then called inverse Fourier transform of F {Y(x) }or 

 ̅(p) and is written as  Y(x) = F – 1{F(Y(x))}, and is given by 
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Remark 1.Some authors also define (12.1) and (12.2) in the following 

manner: 

 

Remark 2.Some authors also define (12.1) and (12.2) in the so called 

symmetric form as follows. 

 

 

12.2.1 The Fourier Sine Transform 

 

The Fourier sine transform of Y(x), 0 <  x < ∞ is denoted and defined as 

follows : 

 

Then, the corresponding inversion formula is given by 

 

12.2.2 The Fourier Cosine Transform: 

 

The Fourier cosine transform of Y(x), 0 <  x < ∞ is denoted and defined 

as follows : 
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Then, the corresponding inversion formula is given by 

 

12.2.3 Linearity Property of Fourier Transforms: 

 

 

 

12.2.4 Change of scale property. 

 

 

 

 

12.2.5 Convolution. 

The convolution of two functions G(x) and H(x), where −∞ <  x < ∞ , is 

denoted and defined as 
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12.2.6 Convolution property 

 

The Fourier transform of the convolution of G(x) and H(x) is the product 

of two transforms of G(x) and H(x) i.e. 

 

 

 

12.2.7 Shifting Property 

 

If  ̅(p) is the complex Fourier transform of Y(x), then complex Fourier 

transform of 

 

 

12.3 FOURIER APPLICATION OF 

FOURIER TRANSFORM 
 

The whole procedure will be clear from the following examples 

 

Example 1. Solve the integral equation 

 

  

 

Let 

 

 

 

Then the given integral equation can be re-written as 
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By definition of fourier cosine transform, we see that Fc (p) is the Fourier 

cosine transform of F(x). Hence, using the corresponding inversion 

formula, we have 

 

 

 

 

 

 

 

 

Example 2. Solve the integral equation 

 

 

 

 

 

 

 

Then the given integral equation can be re-written as 

 

By definition of Fourier sine transform, we see that  ̅s(p) is the Fourier 

cosine transform of F(x). Hence, using the corresponding inversion 

formula, we have 
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Check your Progress-1 

1. Explain Fourier Transform 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2.Define Convolution 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

12.3 MELLIN TRANSFORMATION 
 

Let f(t) be a function defined on the positive real axis 0 < t < ∞. The 

Mellin transformation    is the operation mapping the function f into 

the function F defined on the complex plane by the relation: 

 

 

 

 

The function F(s) is called the Mellin transform of f. In general, the 

integral does exist only for complex values of s = a + jb such that a < a1 

< a2, where a1 and a2 depend on the function f(t) to transform. This 

introduces what is called the strip of definition of the Mellin transform 

that will be denoted by S(a1, a2). 

In some cases, this strip may extend to a half-plane (a1 = –∞ or a2 = + 

∞) or to the whole complex s-plane (a1 = –∞ and a2 = + ∞) 

 

Example: Consider: 

 

 

 

where H is Heaviside’s step function, t0 is a positive number and z is 

complex. The Mellin transform of f is given by: 
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provided s is such that Re(s) < –Re(z). In this case the function f(s) is 

holomorphic in a half-plane. 

12.3.1 Relation to Laplace and Fourier 

Transformations 

Mellin’s transformation is closely related to an extended form of 

Laplace’s. The change of variables defined by:  

 

 

 

 

 

 

Transforms the integral (12.15) into: 

 

After the change of function: 

 

 

 the two-sided Laplace transform of g usually defined by: 

 

 

 

 

This can be written symbolically as: 

 

 

 

The occurrence of a strip of holomorphic for Mellin’s transform can be 

deduced directly from this relation. The usual right-sided Laplace 

transform is analytic in a half-plane Re(s) > σ1. In the same way, one can 

define a left-sided Laplace transform analytic in the region Re(s) < σ2 . If 

the two half-planes overlap, the region of holomorphy of the two-sided 
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transform is thus the strip σ1 < Re(s) < σ2 obtained 

as their intersection. 

To obtain Fourier’s transform, write now s = a + 2πjβ 

  

 

 

The result is 

  

 

 

where   represents the Fourier transformation defined by: 

 

 

 

 

Thus, for a given value of Re(s) = a belonging to the definition strip, the 

Mellin transform of a function can be expressed as a Fourier transform 

12.3.2 Inversion Formula 

 

A direct way to invert Mellin’s transformation (12.15) is to start from 

Fourier’s inversion theorem. As is well know, if  ̌˘=  [f;β] is the Fourier 

transform (12.23) of f, the original function is recovered by: 

 

 

 

Applying this formula to (12.21) with s = a + j2πβ yields: 

 

 

 

Hence, going back to variables t and s: 

 

 

 

The inversion formula finally reads: 
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where the integration is along a vertical line through Re(s) = a. Here a 

few questions arise. What value of a has to be put into the formula? 

What happens when a is changed? Is the inverse unique? In what case is 

f a function defined for all t’s? 

 

It is clear that if F is holomorphic in the strip S(a1, a2) and vanishes 

sufficiently fast when Im(s) → ±∞, then by Cauchy’s theorem, the path 

of integration can be translated sideways inside the strip without 

affecting the result of the integration. More precisely, the following 

theorem holds: 

 

12.3.3Theorem  

 

If, in the strip S(a1, a2), F(s) is holomorphic and satisfies the inequality: 

 

 

 

for some constant K, then the function f(t) obtained by formula (12.27) is 

a continuous function of the variable t ∈ (0,∞) and its Mellin transform is 

F(s). 

 

Remark that this result gives only a sufficient condition for the inversion 

formula to yield a continuous function. 

 

From a practical point of view, it is important to note that the inversion 

formula applies to a function F, holomorphic in a given strip, and that the 

uniqueness of the result holds only with respect to that strip. 

 

In fact, a Mellin transform consists of a pair: a function F(s) and a strip 

of holomorphy S(a1, a2). A unique function F(s) with several disjoint 
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strips of holomorphy will in general have several reciprocals, one for 

each strip. Some examples will illustrate this point. 

 

Example : The Mellin transform of the function: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is given by: 

 

 

 

 

provided Re(s) > –Re(z). We see an example of two functions F(s) 

having the same analytical expression but considered in two distinct 

regions of holomorphy: the inverse Mellin transforms, given respectively 

by (11.29) are indeed different (see Figure 12.1). 

 

Corollary Let  [f;s] and   [g;s] be the Mellin transforms of functions 

f and g with strips of holomorphy Sf and Sg , respectively, and suppose 

that some real number c exists such that c ∈ Sf and 1 – c ∈ Sg. Then 

Parseval’s formula can be written as: 
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This formula may be established formally by computing the right-hand 

side of (12.31) using definition (12.15):  

 

Exchanging the two integrals: 

 

and using the inverse formula (12.27) for g leads to (12.31). 

Different sets of conditions ensuring the validity of this Parseval formula 

may be stated The crucial point is the interchange of integrals that cannot 

always be justified. 

 

12.4 TRANSFORMATION OF 

DISTRIBUTIONS 
 

The extension of the correspondence (12.15) to distributions has to be 

considered to introduce a larger framework in which Dirac delta and 

other singular functions can be treated straightforwardly. The 

distributional setting of Mellin’s transformation has been studied mainly 

by Fung Kang,10 A. H. Zemanian, and O. P. Misra and J. L. Lavoine.  

As we will see, several approaches of the subject are possible as it was 

the case for Fourier’s transformation. 

It is possible to define the Mellin transform for all distributions 

belonging to the space    
 of distributions on the half-line (0, ∞) The 

procedure is to start from the space  (0,∞) of infinitely differentiable 

functions of compact support on (0,∞) and to consider the set Q of their 

Mellin transforms.  

It can be shown that it is a space of entire functions which is isomorphic, 

as a linear topological space, to the space Z of Gelfand and Shilov. This 
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space can be used as a space of test functions and the one-to-one 

correspondence thus defined between elements of spaces   (0,∞) and Q 

can then be carried (i.e., transposed) to the dual spaces   
  and Q′. In this 

operation, a Mellin transform is associated with any distribution in   
  

 and the result belongs to a space Q′ formed of analytic functionals  

 

The situation is quite analogous to that encountered with the Fourier 

transformation where a correspondence between distributions spaces   ′ 

and Z′ is established. Actually, it may be efficient to restrict the class of 

distributions for which the Mellin transformation will be defined, as is 

usually done in Fourier analysis with the introduction of the space    ′ of 

tempered distributions. In the present case, a similar approach can be 

based on the possibility to single out subspaces of    
 whose elements 

are Mellin-transformed into functions which are analytic in a given 

strip. This construction will now be sketched. 

 

The most practical way to proceed is to give a new interpretation of 

formula (12.15) by considering it as the application of a distribution f to a 

test function t s–1: 

 

 

 

 

A suitable space of test functions  (a1, a2) containing all functions t 
s–1 

for s in the region a1 < Re(s) a2 may be introduced as follows. The space 

 (a1, a2) is composed of functions φ(t) defined on (0,∞) and with 

continuous derivatives of all orders going to zero as t approaches either 

zero or infinity. More precisely, there exists two positive numbers ζ1,ζ2, 

such that, for all integers k, the following conditions hold: 
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A topology on    is defined accordingly, it can be verified that all 

functions in  (0,∞) belong to (a1, a2). The space of distributions   ′(a1, 

a2) is then introduced as a linear space of continuous linear functional on 

(a1, a2). It may be noticed that if α1, α2 are two real numbers such that a1 

< α1< α2 < a2, then (α1,α2) is included in (a1, a2). One may so define a 

whole collection of ascending spaces (a1, a2) with compatible* 

topologies, thus ensuring the existence of limit spaces when a1 → –∞ 

and/or a2 → ∞. Hence, the dual spaces of distributions are such that  

 '(a1, a2) ⊂    ′(α1, α2) and    ′(–∞, +∞) is included in all of them. 

Moreover, as a consequence of the status of  (0,∞) relatively to  (a1, 

a2), the space    ′(a1, a2) is a subspace of distributions in    
 .  

 

With the above definitions, the Mellin transform of an element f ∈ ′(a1, 

a2) is defined by: 

 

 

 

The result is always a conventional function F(s) holomorphic in the 

strip a1 < Re(s) < a2. 

In summary, every distribution in   
 has a Mellin transform which, as a 

rule, is an analytic functional. 

Besides, it is possible to define subspaces    ′(a1, a2) of   
  whose 

elements, f, are Mellin transformed by formula (12.37) into functions 

F(s) holomorphic in the strip S(a1, a2). Any space,   ′, contains in 

particular Dirac distributions and arbitrary distributions of bounded 

support. They are stable under derivation and multiplication by a smooth 

function. Their complete characterization is given by the following 

theorems. 

12.4.1Theorem (Uniqueness theorem) Let [f;s] = F(s) and [h;s] = H(s) be 

Mellin transforms with strips of holomorphy Sf and Sh, respectively. If 

the strips overlap and if F(s)  H(s) for s ∈ Sf  Sh, then f  ≡ h as 

distributions in   ′(a1, a2) where the interval (a1, a2) is given by the 

intersection of Sf   Sh with the real axis. 
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12.4.2 Theorem (Characterization of the Mellin transform of a 

distribution in  ′(a1, a2). A necessary and sufficient condition for a 

function F(s) to be the Mellin transform of a distribution f ∈′(a1, a2) is 

 

• F(s) is analytic in the strip a1 < Re (s) < a2) , 

• For any closed substrip α1 ≤ Re(s) ≤ α2 with a1 < α1 < α2 < a2 there 

exists a polynomial P such that  F(s) ≤ P (s) for α1 ≤ Re(s) ≤ α2. 

 

Check your Progress-2 

3. State Inversion Formula 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4.State Characterization of the Mellin transform Theorem 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

12.5 LET US SUM UP  
 

We have discussed Fourier Transform and its properties. We discussed in 

detail the Mellin Transformation. 

 

12.6 KEYWORDS 
 

Holomorphic function: is a complex-valued function of one or more 

complex variables that is, at every point of its domain, complex 

differentiable in a neighbourhood of the point. 

Expanded Form: The expanded notation a number is represented as the 

sum of each digit in a number multiplied by its place value. 

12.7 QUESTIONS FOR REVIEW 
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1. Solve the integral equation 

 

 

2. Solve the Abel integral equation of the second kind 

 

3. Solve the distribution by Mellin transform  

 

12.8 SUGGESTED READINGS AND 

REFERENCES 
 

1. M. Gelfand and S. V. Fomin. Calculus of Variations, Prentice Hall. 

2. Linear Integral Equation: W.V. Lovitt (Dover). 

3. Integral Equations, Porter and  Stirling, Cambridge. 

4. The Use of Integral Transform, I.n. Sneddon, Tata-McGrawHill, 

1974 

5. R. Churchil& J. Brown  Fourier Series and Boundary Value 

Problems, McGraw-Hill, 1978 

6. D. Powers, Boundary Value Problems Academic Press, 1979. 

 

12.9 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide explanation and remarks– 12.2 

2. Provide definition – 12.2.5 

3. Provide expression with explanation – 12.3.2  

4. Provide statement– 12.4.2 
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UNIT 13: INTEGRAL TRANSFORM 

METHOD III 
 

STRUCTURE 

13.0 Objectives 

13.1 Introduction 

13.2 Definitions and Properties of Bessel function 

13.2.1 Elementary properties of the Bessel functions 

13.3 Hankel Transform Definition 

13.4 Connection with the Fourier Transform 

13.5 Properties and Example 

13.5.1 Convolution Identity 

13.6 Let us sum up 

13.7 Keywords 

13.8 Questions for Review 

13.9 Suggested Reading and References 

13.10 Answers to Check your Progress 

13.0 OBJECTIVES 
 

Understand the concept of Bessel function  

Understand the Elementary properties of the Bessel functions 

Understand the Hankel Transform 

Comprehend the Connection with the Fourier Transform  

13.1 INTRODUCTION 
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Hankel transforms are integral transformations whose kernels are Bessel 

functions. They are sometimes referred to as Bessel transforms. When 

we are dealing with problems that show circular symmetry, Hankel 

transforms may be very useful. Laplace’s partial differential equation in 

cylindrical coordinates can be transformed into an ordinary differential 

equation by using the Hankel transform. Because the Hankel transform is 

the two-dimensional Fourier transform of a circularly symmetric 

function, it plays an important role in optical data processing. 

 

13.2 DEFINITIONS AND PROPERTIES 
 

Bessel functions are solutions of the differential equation 

 

 

 

where p is a parameter. 

 

Equation (13.1) can be solved using series expansions. The Bessel 

function Jp(x) of the first kind and of order p is defined by 

  

 

 

 

The Bessel function Yp(x) of the second kind and of order p is another 

solution that satisfies 

 

 

 

 

 

Properties of Bessel function have been studies extensively.  

13.2.1 Elementary properties of the Bessel 

functions are 
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1. Asymptotic forms. 

 

2. Zeros.  

Jp(x) and Yp(x) have an infinite number of real zeros, all of which are 

simple, with the possible exception of x = 0. For nonnegative p the sth 

positive zero of Jp(x) is denoted by jp,s . The distance between two 

consecutive zeros tends to π: (jp,s+1 – jp,s) = π. 

 

3. Integral representations. 

 

 

If p is a positive integer or zero, then 

 

 

 

 

 

4. Recurrence relations. 

 

 

 

 

 

 

 

 

5. Hankel’s repeated integral. Let ƒ(r) be an arbitrary function of the real 

variable r, subject to the condition that 
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is absolutely convergent. Then for p ≥ –1/2 

 

 

provided that ƒ(r) satisfies certain Dirichlet condtions. 

 

13.3 HANKEL TRANSFORM DEFINITION 
 

Let ƒ(r) be a function defined for r ≥ 0. The vth order Hankel transform 

of ƒ(r) is defined as 

 

 

 

If v > –1/2, Hankel’s repeated integral immediately gives the inversion 

formula 

 

 

 

The most important special cases of the Hankel transform correspond to 

v = 0 and v = 1. Sufficient but not necessary conditions for the validity of 

(13.11) and (13.12) are 

 

1. f (r) = O(r –k), r → ∞ where k > 3/2. 

2. f ′(r) is piecewise continuous over each bounded subinterval of [0, ∞). 

3. f (r) is defined as [ f (r+) + f (r–)]/2. 

 

These conditions can be relaxed. 

 

13.4 CONNECTION WITH FOURIER 

TRANSFORM 
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We consider the two-dimensional Fourier transform of a function ϕ(x,y), 

which shows a circular symmetry. This means that ϕ(r cos θ, r sin θ)  

ƒ(r,θ) is independent of θ. 

 

The Fourier transform of ϕ is 

 

We introduce the polar coordinates 

 

 

 

 

 

We have then 

 

This result shows that F(s,ϕ) is independent of ϕ, so that we can write 

F(s) instead of F(s, ϕ). Thus, the two-dimensional Fourier transform of a 

circularly symmetric function is, in fact, a Hankel transform of order 

zero. 

This result can be generalized: the N-dimensional Fourier transform of a 

circularly symmetric functionof N variables is related to the Hankel 

transform of order N/2 – 1. If ƒ(r,θ) depends on θ, we can expand it into 

a Fourier series 

 

 

 

And similarly, 
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where 

and 

 

 

 

 

 

Substituting (13.15) into (13.17) and using (13.14), we obtain 

 

In a similar way, we can derive 

 

 

Check your Progress-1 

1. State Asymptotic forms of the Bessel Function 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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2.Define Hankel Transform Definition 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

13.5 PROPERTIES AND EXAMPLE  
 

Hankel transforms do not have as many elementary properties as do the 

Laplace or the Fourier transforms. 

For example, because there is no simple addition formula for Bessel 

functions, the Hankel transform does not satisfy any simple convolution 

relation. 

 

1. Derivatives.  

 

Let 

 

 

Then 

 

Proof: 

 

 

 

 

 

In general, the expression between the brackets is zero, and 

 

 

 

 

Hence, we have (13.19). 



Notes 

94 

2. The Hankel transform of the Bessel differential operator. The Bessel 

differential operator 

 

 

 

 

is derived from the Laplacian operator 

 

 

 

 

after separation of variables in cylindrical coordinates (r, θ, z). 

 

Let ƒ(r) be an arbitrary function with the property that             = 0. 

Then 

 

 

 

This result shows that the Hankel transform may be a useful tool in 

solving problems with cylindrical symmetry and involving the Laplacian 

operator. 

 

Proof Integrating by parts, we have 

 

 

 

 

 

 

 

 

 

This 

property is the principal one for applications of the Hankel transforms to 

solving differential equations.  
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2. Division by r. 

 

 

 

 

 

 

 

 

 

7. Parseval’s theorem. Let 

 

 

and 

 

 

Then 

 

13.5.1 Convolution Identity 

 

Let ƒ1(r) and ƒ2(r) have Hankel transforms F1(s) and F2(s), respectively. 
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We have 

Hence, we have 

 

 

Therefore, to find the inverse Hankel transform of 2πF1(s)F2(s), we 

convolve    √       with   √        and in the answer we replace 

√     by r. We can also write the above relationship in the form 

 

 

Example: 

 

If ƒ1(r) = ƒ2(r) = [J1(ar)]/r then from the convolution identity above, we 

obtain 

 

 

 

 

 

 

 

 

 

where 

Hence 
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Example: The Hankel transform of r 
v–1

 e 
–ar

, a > 0 is given by 

 

 

 

 

 

 

where we set t = rs and L is the Laplace transform operator .But 

 

 

 

 

 

 

 

 

 

 

 

The duplication formula of the gamma function gives the relationship 

 

 

 

and, therefore, the Laplace transform relation becomes 

 

 

 

 

 

The last series can be summed by using properties of the binomial series 
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where the relation 

 

 

 

 

was used. The Laplace transform now becomes 

and, hence, 

 

If we set v = 0, we obtain 

 

 

 

 

Example  

The Hankel transform   {e –ar} is given by 

 

 

 

 

 

 

since multiplication by r corresponds to differentiation in the Laplace 

transform domain. 

Example: 

We know the following identity: 
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where rn(x) = Jn(x)/x 
n
. 

Using the Hankel transform property of the Bessel operator, we obtain 

the relationship 

 

 

 

 

 

 

 

We know, 

 

And hence 

 

 

 

 

Example : 

If the impulse response of a linear space invariant system is h(r) and the 

input to the system is ƒ(r), then its output is g (r) = ƒ (r)**h(r) and, 

hence, 

 

 

Since   {J0(ar)} = [δ(s – a)]/a and ϕ(s)δ(s – a) = ϕ(a)δ(s – a), we 

conclude that if the input is ƒ(r) = J0(ar), then 
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Therefore, the output is 

 

 

Check your Progress-2 

3. Explain The Hankel transform of the Bessel differential operator 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4.State Convolution Identity 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

13.6 LET US SUM UP  
 

Hankel transform is the two-dimensional Fourier transform of a 

circularly symmetric function, it plays an important role in optical data 

processing. 

 

13.7 KEYWORDS 
 

Identity : an identity is an equality relating one 

 mathematical expression  A to another mathematical expression B, 

such that A and B (which might contain some variables) produce the 

same value for all values of the variables within a certain range of 

validity 

 

Domain. The domain of a function is the complete set of possible 

values of the independent variable. 
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13.8 QUESTIONS FOR REVIEW 
 

1. State the Elementary properties of the Bessel functions 

 

3. Explain Connection with fourier Transform 

 

13.9 SUGGESTED READINGS AND 

REFERENCES 
 

7. M. Gelfand and S. V. Fomin. Calculus of Variations, Prentice Hall. 

8. Linear Integral Equation: W.V. Lovitt (Dover). 

9. Integral Equations, Porter and  Stirling, Cambridge. 

10. The Use of Integral Transform, I.n. Sneddon, Tata-McGrawHill, 

1974 

11. R. Churchil& J. Brown  Fourier Series and Boundary Value 

Problems, McGraw-Hill, 1978 

12. D. Powers, Boundary Value Problems Academic Press, 1979. 

 

13.10 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide the property– 13.2.1 

2. Provide definition – 13.3 

3. Provide statement and proof – 13.5 [2
nd

 point] 

4. Provide identity– 13.5.1  
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UNIT 14: INTEGRAL TRANSFORM 

AND BOUNDARY VALUE 

APPLICATION 
 

STRUCTURE 

14.0 Objectives 

14.1 Introduction 

14.2 The Electrified Disc 

14.3Heat Conduction 

14.4 The Laplace Equation in the Halfspace z > 0, with a Circularly 

Symmetric Dirichlet Condition at z = 0 

14.5 An Electrostatic Problem 

14.6The Finite Hankel Transform 

14.6.1 Application  

14.7 Related Transforms 

14.7.1 Need of Numerical Integration Methods 

14.7.2 Tables of Hankel Transforms 

14.8 Let us sum up 

14.9 Keywords 

14.10 Questions for Review 

14.11 Suggested Reading and References 

14.12 Answers to Check your Progress 

14.0 OBJECTIVES 
 

Understand the boundary value application of Hankel Transform  

Understand the The Finite Hankel Transform 
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Comprehend the Related Transforms 

14.1 INTRODUCTION 
 

The Hankel transform is an integral transform and was first developed by 

the mathematician Hermann Hankel. It is also known as the Fourier–

Bessel transform. Just as the Fourier transform for an infinite interval is 

related to the Fourier series over a finite interval, so the Hankel transform 

over an infinite interval is related to the Fourier–Bessel series over a 

finite interval. 

 

14.2 THE ELECTRIFIED DISC 
 

Let υ be the electric potential due to a flat circular electrified disc, with 

radius R = 1, the center of the disc being at the origin of the three-

dimensional space and its axis along the z-axis. In polar coordinates, the 

potential satisfies Laplace’s equation 

 

 

 

 

The boundary conditions are 

 

 

 

 

 

In (14.2), υ0 is the potential of the disc. Condition (14.3) arises from the 

symmetry about the plane z = 0. 

Let 
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so that 

 

 

 

 

The solution of this differential equation is 

 

 

 

where A and B are functions that we have to determine using the 

boundary conditions. 

 

 

 

 

Because the potential vanishes as z tends to infinity, we have B(s)  0. By 

inverting the Hankel transform, we have 

 

The boundary conditions are now 
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we see that A(s) = sin s/s 2 so that 

 

 

 

 

In Figure 14.1, the graphical representation of υ(r,z) for υ0 = 1 is 

depicted on the domain 0 ≤ r ≤ 2, 0 ≤ z ≤ 1. The evaluation of υ(r,z) 

requires numerical integration. 

 

Equations (14.4) and (14.5) are special cases of the more general pair of 

equations 

 

 

 

 

 

 

where a(x) is given and ƒ(x) is to be determined. 

The solution of (14.3) can be expressed as a repeated integral 

 

If a(x) = x β, and α < 1, 2α + β > –3/2, α + v > –1, v > –1, then 

 

With β = v and α < 1, α + v > – 1, v > – 1 further simplification is 

possible: 
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14.3HEAT CONDUCTION 
 

Heat is supplied at a constant rate Q per unit area and per unit time 

through a circular disc of radius a in the plane z = 0, to the semi-infinite 

space z > 0. The thermal conductivity of the space is K. The plane 

z = 0 outside the disc is insulated. The temperature is denoted by υ(r,z). 

We have again the Laplace Equation (14.1) in polar 

coordinates, but the boundary conditions are now 

 

 

 

 

 

The Hankel transform of the differential equation is again 

 

 

 

 

We can now transform also the boundary condition, 

 

 

 

 

The solution of (14.13) must remain finite as z tends to infinity. We have 

 

 

 

Using condition (14.15) we can determine 
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Consequently, the temperature is given by 

 

 

 

 

14.4 THE LAPLACE EQUATION IN THE 

HALFSPACE Z > 0, WITH A 

CIRCULARLY SYMMETRIC DIRICHLET 

CONDITION AT Z = 0 
 

We try to find the solution υ(r,z) of the boundary value problem 

 

 

 

 

 

Taking the Hankel transform of order    yields 

 

 

 

 

 

and 

 

 

 

The solution is  

 

 

so that 
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For the special case 

 

 

 

where h(r) is the unit step function, we have the solution 

 

 

Check your Progress-1 

1. Explain the Heat Conduction application of Hankel’s Transform 

__________________________________________________________

__________________________________________________________

_________________________________________________ 

2.Discuss The Laplace Equation in the Halfspace z > 0, with a Circularly 

Symmetric Dirichlet Condition at z = 0 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

14.5 AN ELECTROSTATIC PROBLEM 
 

The electrostatic potential Q(r,z) generated in the space between two 

grounded horizontal plates at z = ± l  by a point charge q at r = 0, z = 0 

shows a singular behavior at the origin. It is given by 

 

 

 

where ϕ(r,z) satisfies Laplace’s Equation (9.26). The boundary 

conditions are 

 

 

 

Taking the Hankel transform of order 0, we obtain 
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The solution is 

 

 

where A(s) and B(s) must satisfy 

 

 

 

 

 

 

Hence 

 

 

 

 

 

and 

 

Hence 

 

 

 

14.6 THE FINITE HANKEL TRANSFORM 
 

 

We consider the integral transformation 
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A property of this transformation is that 

 

 

 

where  

v is the Bessel differential operator. 

If α is equal to the sth positive zero jv,s of Jv(x), we have 

 

 

 

 

If α is equal to the sth positive root βv,s of 

 

 

where h is a nonnegative constant, we have 

 

The transformation (14.25) with α = j v,s, s = 1, 2, … is the finite Hankel 

transform. It maps the function 

ƒ(r) into the vector (Fv(jv,1), Fv(jv, 2), Fv(j v,3) …). The inversion 

formula can be obtained from the wellknown theory of Fourier-Bessel 

series 

 

 

 

 

The transformation (14.25) with α = βv ,s, s = 1, 2, … is the modified 

finite Hankel transform. The inversion 
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Formula is 

If h = 0, βv,s is the sth positive zero of denoted by j'v,s 

 

 

14.6.1 Application 

 

We calculate the temperature υ(r,t) at time t of a long solid cylinder of 

unit radius. The initial temperature is unity and radiation takes place at 

the surface into the surrounding medium maintained at zero 

temperature. 

The mathematical model of this problem is the diffusion equation in 

polar coordinates 

 

The initial condition is 

 

 

 

The radiation at the surface of the cylinder is described by the mixed 

boundary condition 

 

 

 

 

where h is a positive constant. Transformation of (14.28) by the modified 

finite Hankel transform yields 

 

 

 

 

 

 

where 
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so that 

 

 

 

The solution of (14.32), with the initial condition (14.33), is 

 

 

 

Using the inversion formula, we obtain 

 

 

 

14.7 RELATED TRANSFORM 
 

For some applications, Hankel transforms with a more general kernel 

may be useful. We give one example. 

We consider the cylinder function 

 

Using this function as a kernel, we can construct the following transform 

pair: 

 

The inversion formula follows immediately from Weber’s integral 

theorem 
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For this reason, we will refer to (9.61) and (9.62) as the Weber 

transform. This transform has the following 

important property: 

If 

 

 

 

 

 

We may expect that this transform is useful for solving Laplace’s 

equation in cylindrical coordinates, with a  boundary condition at r = 1. 

 

Example 

We want to compute the steady-state temperature u(r,z) in a horizontal 

infinite homogeneous slab of thickness 2, through which there is a 

vertical circular hole of radius 1. The horizontal faces are held at 

temperature zero and the circular surface in the hole is at temperature T0. 

The mathematical model is 

 

 

 

 

 

 

Taking the Weber transform of order zero, we have 

 

 

 

 

The solution of this ordinary differential equation, satisfying the 

boundary condition, is 
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Consequently, we have 

 

14.7.1 Need of Numerical Integration Methods 

 

When using the Hankel transform for solving partial differential 

equations, the solution is found as an integral of the form 

 

 

 

where a is a positive real number or infinite. In most cases, analytical 

integration of (14.43) is impossible,and numerical integration is 

necessary. But integrals of type (14.43) are difficult to evaluate 

numerically if 

 

1. The product ap is large. 

2. a is infinite. 

3. ƒ (x) shows a singular or oscillatory behavior. 

 

In cases 1 and 2, the difficulties arise from the oscillatory behavior of 

Jv(x) and they grow when the oscillations become stronger. 

We give here a survey of numerical methods that are especially suited for 

the evaluation of I (a, p, v) when ap is large or a is infinite. We restrict 

ourselves to cases where ƒ(x) is smooth, or where ƒ(x) = x αg (x) where g 

(x) is smooth and α is a real number. 

 

Check your Progress-2 

3. State and discuss application of the Finite Hankel Transform 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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4.Explain Related Transform 

__________________________________________________________

__________________________________________________________

_________________________________________________________ 

 

14.7.2 Tables of Hankel Transforms 

 

Table 9.1 lists the Hankel transform of some particular functions for the 

important special case v = 0. 

Table 9.2 lists Hankel transforms of general order v. In these tables, h(x) 

is the unit step function, Iv and Kv are modified Bessel functions, L0 and 

H0 are Struve functions, and Ker and Kei are Kelvin functions as defined 

in Abramowitz and Stegun. 
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14.8 LET US SUM UP  
 

We have discussed the boundary value application of the Hankel 

Transform. We also discussed about The Finite Hankel Transform and its 

application. We have seen some related transform and Hankel Tables. 

 

14.9 KEYWORDS 
 

Transform :A transformation is a process that manipulates a polygon 

or other two-dimensional object on a plane or coordinate system 

Unit step function: functions whose values change abruptly at specified 

values of time t 

14.10 QUESTIONS FOR REVIEW 
 

1. Discuss any two applications of the Hankel Transform in detail 

 

2. Explain The Finite Hankel Transform 
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14.11  SUGGESTED READINGS AND 

REFERENCES 
 

13. M. Gelfand and S. V. Fomin. Calculus of Variations, Prentice Hall. 

14. Linear Integral Equation: W.V. Lovitt (Dover). 

15. Integral Equations, Porter and  Stirling, Cambridge. 

16. The Use of Integral Transform, I.n. Sneddon, Tata-McGrawHill, 

1974 

17. R. Churchil& J. Brown  Fourier Series and Boundary Value 

Problems, McGraw-Hill, 1978 

18. D. Powers, Boundary Value Problems Academic Press, 1979. 

 

14.12 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide explanation– 14.3 

2. Provide explanation – 14.4 

3. Provide explanation – 14.6.1 

4. Provide explanation – 14.7   

 


